TWO CHROMONE DERIVATIVES FROM THE BROWN ALGA ZONARIA TOURNEFORTII

Corrado Tringali and Mario Piattelli*

Istituto Dipartimentale di Chimica dell'Università di Catania, Catania, Italy

Two minor lipid components of the brown seaweed Zonaria tournefortii were characterized as (all 2) - 5',7'-dihydroxy-2'-nonadeca-4,7,10,13,16-pentenylchromone (3) and 5',7'-dihydroxy-2'-pentadecylchromone (4).

In previous work^{1,2} we reported the isolation of the acylphloroglucinols 1 and 2 from the brown alga Zonaria tournefortii (Lamour.) Mont. Further investigation of the minor lipids of this species has now led to the isolation of the biogenetically related chromones 3 and 4.

Chromatography on a silica gel column (increasing concentrations of ether in hexane as the eluent) of the alkali-soluble fraction from the chloroform exctract of the alga afforded a mixture of 3 and 4 which was further submitted to rechromatography on Lichroprep Si 60 (eluent acetone-hexane 1:9).

Compound 3 (0.03% dry weight alga), m. p. 53-54° C, had molecular formula $C_{28} H_{34} O_A$ (high resolution mass spectrometry $M^+ m/z$ obs. 434.2449; calc. 434.2457). Upon mild catalytic hydrogenation it gave the decahydro-derivative $5, C_{28} H_{44} O_{4}, m/z$ 444, 429, 415, 401, 387, 373, 359, 345, 331, 317, 303, 289, 275, 261, 247, 233, 219, 205 (base), 192, 179, 163, 153, which indicated the presence of five olefinic groups. The spectral properties of $3 \left[v_{max}^{CHC1} 3 \ 1659, 1625, 1586 \ cm^{-1} \ (\gamma - pyrone); {}^{3} \lambda_{max}^{EtOH} \ (\log \ \epsilon \) \ 228 \ (4.35), \ 250 \ (4.41), \ 258 \ (4.40), \ 292 \ (4.41), \ 292 \ ($ (4.11) and 325 nm (sh, 3.95); 268 and 335 in base] were strongly indicative of a 5,7 - dihydroxychromone chromophore. ⁴ Indeed, the cmr spectrum (Table 1) contained all the appropriate resonances for this ring system 5,6, and in addition displayed signals for ten olefinic carbons, eight methylenes and a methyl group. Formulation of structure 3 could be made by analysis of its 270 MHz pmr features, including the results of extensive double resonance exper-

1509

iments (Table 1). In the aromatic region of the spectrum two <u>meta-coupled</u> (J = 2 Hz) protons appeared at δ 6.68 and 6.74, while the proton at C-3' was seen as a singlet at δ 6.21, thus fixing the side chain at C-2'. A tenproton multiplet at δ 5.45 and an eight-proton multiplet at δ 2.94 indicated the presence of five non-conjugated double bonds and four doubly allylic methylenes, respectively. Double resonance experiments evidenced the spin systems C-17 through C-19 and C-1 through C-4, thus establishing the structure of the side chain. The Z nature of the olefinic double bonds was indicated by the chemical shifts observed in the cmr spectrum for the signals of the allylic methylenes.⁷ The mass spectrum of <u>3</u> (<u>m/z</u> 434, 419, 405, 379, 365, 339, 325, 299, 285, 271, 257, 245, 231, 218, 205 (base), 192, 179, 175, 163, 153

1	E	п.	ъ	
+	Э	т	1	

Decitie-	¹³ C		1 _H				
Position	<u>3</u>	4	<u>3</u>	DR ^f	<u>4</u>	<u>5</u>	
2'	171.4 s	176.8 s	ter Gali an an an				
3'	107.7 d	108.1 d	6.21 s		5.94 s	5.92 s	
4'	183.2 s	181.6 s					
5'	158.9 s	157.6 s					
6'	100.0 d ^b	99.4 d ^b	6.68 d(2)	b	6.27 bs	6.25 bs	
7'	163.9 s	169.8 s					
8'	94.7 d ^b	94.2 d ^b	$6.74 d(2)^{1}$	b	6.27 bs	6.25 bs	
9'	105.1 s	96.4 s					
10'	162.5 s	161.8 s					
1	33.8 t	33.7 t	2.51 t(7)	s {1.73}	2.10 t(7)	2.08 t(7)	
2	26.8 t ^c	26.8 t	1.73 p(7)	t {2.51}, t {2.17}	1.98 p(7)	1.98 p(7)	
3	26.5 t ^c	24.8 t	2.17 q(7)	d {1.73}	1.32	1.31	
4	129.7 d	29.8 t ^C	5.45		1.32	1.31	
5	128.9 d	29.8 t ^c	5.45		1.32	1.31	
6	25.6 t ^d	29.8 t ^C	2.94		1.32	1.31	
7	128.7 d ^e	29.8 t ^c	5.45		1.32	1.31	
8	128.3 d ^e	29.5 t ^C	5.45		1.32	1.31	
9	25.7 t ^d	29.5 t ^c	2.94		1.32	1.31	
10	128.6 d ^e	29.5 t ^C	5.45		1.32	1.31	
11	128.3 d ^e	29.2 t ^c	5.45		1.32	1.31	
12	25.7 t ^d	29.2 t ^c	2.94		1.32	1.31	
13	128.6 d ^e	32.0 t	5.45		1.32	1.31	
14	128.3 d ^e	22.8 t	5.45		1.32	1.31	
15	25.7 d ^d	14.2 q	2.94		0.92 Ъ	1.31	
16	127.3 d		5.45			1.31	
17	132.3 d		5.45			1.31	
18	20.6 t		2.06 p(7)	a {0.94}		1.31	
19	14.3 q		0.94 t(7)	s {2.06}		0.90 Ъ	
OH			6.00 ъ		5.50 Ъ	5.50 b	

Table 1. ${}^{13}C$ and ${}^{1}H$ chemical shifts and multiplicities for compounds 3, 4 and 5 and 5

a: ¹³C NMR spectra were run at 20.1 MHz, CDCl₃, ppm from TMS: multiplicities were obtained by off-resonance decoupling; ¹H NMR spectra were run at 270 MHz in C_D_N ($\underline{3}$) or C_D ($\underline{4}$ and $\underline{5}$) with TMS as internal standard: chemical shifts are a values, coupling constants (J in parentheses) are given in Hz. Signal multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet. Assignments are based on decoupling experiments and extrapolation from literature data.⁵⁻⁸

b - e: Assignments may be intermixed.

f: Signal multiplicities after irradiation at [6]

g: Affected.

(the last two peaks arise from 192 fragment by loss of CO followed by a hydrogen atom and from the parent ion by a retro-Diels-Alder reaction involving the heterocyclic ring, respectively, according to the known fragmentation pattern of chromone derivatives⁹) agree with the assigned structure.

Compound <u>4</u> (0.01% dry weight alga), m.p. 79-80° C, according to high resolution mass spectrometry had the elemental composition $C_{24}H_{36}O_4$. Ultraviolet and infrared spectra contained absorptions $\begin{bmatrix} v_{max}^{CHC1} & 1660, 1625, 1590 \text{ cm}^{-1} \\ v_{max}^{A} & 100 \\ max \end{bmatrix}$ (log ε) 228 (4.36), 250 (4.40), 258 (4.39), 295 (4.12) and 325 (sh, 4.01) nm] attributable to a 5,7-dihydroxychromone derivative. The cmr and pmr spectra (Table 1) led unambiguously to the conclusion that <u>4</u> was 5',7'-dihydroxy-2'-pentadecylchromone. This was confirmed by the mass spectrum which showed peaks at <u>m/z</u> 388, 373, 359, 345, 331, 317, 303, 289, 275, 261, 247, 233, 219, 205 (base), 192, 163 and 153.

<u>Acknowledgements</u> - This work is a result of a research sponsored by the Consiglio Nazionale delle Ricerche (Rome), Programma Finalizzato 'Oceanografia e Fondi Marini'. Thanks are due to Dr. L. Mayol, 'Centro di Metodologie Chimico-Fisiche' of the University of Naples for the determination of 270 MHz spectra.

References

- V. Amico, R. Currenti, G. Oriente, M. Piattelli and C. Tringali, <u>Phytochemistry 20</u>, 1451 (1981).
- V. Amico, G. Nicolosi, G. Oriente, M. Piattelli and C. Tringali, <u>Phytochemistry</u>, in press.
- K. Nakanishi, in <u>Infrared Absorption Spectroscopy</u>, p. 52. Holden Day, San Francisco, 1962.
- 4. P. H. Mc Cabe, R. Mc Crinde and R. D. H. Murray, <u>J. Chem. Soc</u>. C, 145 (1967).
- 5. B. Ternai and K. R. Markham, Tetrahedron 32, 565 (1976).
- H. Wagner, V. M. Chari and J. Sonnenbichler, <u>Tetrahedron Letters</u> 1799 (1976).
- E. Wenkert, B. L. Buckwalter, I. R. Burfitt, N. J. Gasic, H. E. Gottlieb,
 E. W. Hagaman, F. N. Schell and P. M. Wovkulich in <u>Topics in Carbon-13</u> <u>NMR Spectroscopy</u> (Levy, G. C. ed.) Vol. 2, p. 81. Wiley, New York (1975).
- 8. J. L. C. Wright, Phytochemistry 19, 143 (1980).
- 9. T. J. Mabry and K. R. Markham, 'Mass spectrometry of flavonoids' in <u>The</u> <u>Flavonoids</u> (J. B. Harborne, T. J. Mabry and H. Mabry ed.),pp. 79-83. Chapman and Hall, London 1975.

(Received in UK 29 January 1982)

1512